Online Tools Toolshu.com Log In Sign Up

Create Matplotlib Plots in Your Browser — No Installation Required

Original Author:bhnw Edited on 2025-10-07 22:06 103 views Star (1)

For beginners or users who need to quickly validate visualization code, setting up a local Python environment can be a significant barrier. This guide shows how to use the Online Python Runner (based on Python 3.12.7) to execute Matplotlib code directly in your browser and view or download the generated plots—without installing any software.

Tool Features

  • Python 3.12.7 with full standard library support
  • Built-in support for common data science libraries (e.g., NumPy, Pandas, Matplotlib) via package manager
  • Virtual file system for creating, previewing, and downloading files (including .png, .jpg, .svg, etc.)
  • Instant code execution with real-time output
  • Ideal for teaching, code validation, and lightweight data visualization

Try it here: https://toolshu.com/python3

How to Use

1. Write Plotting Code

Enter the following example in the editor:

import matplotlib.pyplot as plt

# Sample data
x = [1, 2, 3, 4, 5]
y = [10, 20, 15, 25, 30]

# Plot
plt.figure(figsize=(6, 4))
plt.plot(x, y, marker='o')
plt.title('Simple Line Plot')
plt.xlabel('X')
plt.ylabel('Y')

plt.show()
plt.savefig('output.png')
print("Image saved as output.png")

2. Run the Code

Click Run. The console will confirm that the image has been saved.

3. View and Download the Image

  • Open the File Browser in the interface
  • Locate output.png
  • Click Preview to view the image online, or Download to save it locally

Important Notes

  • The virtual file system is session-scoped. Files may be lost when you close the browser tab—download important outputs promptly.
  • While common libraries are supported, packages requiring C extensions or system-level dependencies may not work.
  • This environment is optimized for small- to medium-sized scripts and educational use, not for long-running or resource-intensive tasks.

Common Plotting Examples

1. Basic Line Plot

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y = [2, 5, 3, 8, 7]

plt.plot(x, y, marker='o')
plt.title('Line Plot')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
plt.savefig('line_plot.png')
plt.close()

2. Bar Chart

import matplotlib.pyplot as plt

categories = ['A', 'B', 'C', 'D']
values = [23, 45, 56, 78]

plt.bar(categories, values, color='skyblue')
plt.title('Bar Chart')
plt.xlabel('Category')
plt.ylabel('Value')
plt.show()
plt.savefig('bar_chart.png')
plt.close()

3. Scatter Plot

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(0)
x = np.random.randn(100)
y = 2 * x + np.random.randn(100)

plt.scatter(x, y, alpha=0.7)
plt.title('Scatter Plot')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
plt.savefig('scatter_plot.png')
plt.close()

4. Multiple Subplots

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x)

fig, axs = plt.subplots(2, 1, figsize=(6, 6))
axs[0].plot(x, y1)
axs[0].set_title('sin(x)')
axs[1].plot(x, y2, color='orange')
axs[1].set_title('cos(x)')

plt.tight_layout()
plt.show()
plt.savefig('subplots.png')
plt.close()

5. Integration with Pandas

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame({
    'Month': ['Jan', 'Feb', 'Mar', 'Apr'],
    'Sales': [200, 250, 300, 280]
})

df.plot(x='Month', y='Sales', kind='bar', color='green')
plt.title('Monthly Sales')
plt.show()
plt.savefig('pandas_bar.png')
plt.close()

6. High-Resolution Output

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 2 * np.pi, 100)
y = np.sin(x)

plt.figure(figsize=(8, 4))
plt.plot(x, y)
plt.title('High-Resolution Sine Wave')
plt.show()
plt.savefig('sine_hd.png', dpi=300, bbox_inches='tight')
plt.close()

Tip: Always call plt.close() (or plt.clf()) at the end of your script to prevent plot state from leaking between runs.


Summary

This online Python environment significantly lowers the barrier to entry for data visualization in Python. It’s especially valuable for teaching, rapid prototyping, and ad-hoc plotting—letting you focus on code logic rather than environment setup.

Get started now: https://toolshu.com/python3

发现周边 发现周边
Comment area

Loading...